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ABSTRACT
User-based Collaborative Filtering (CF) is one of the most pop-
ular approaches to create recommender systems. �is approach
is based on �nding the most relevant k users from whose rating
history we can extract items to recommend. CF, however, su�ers
from data sparsity and the cold-start problem since users o�en rate
only a small fraction of available items. One solution is to incor-
porate additional information into the recommendation process
such as explicit trust scores that are assigned by users to others
or implicit trust relationships that result from social connections
between users. Such relationships typically form a very sparse
trust network, which can be utilized to generate recommendations
for users based on people they trust. In our work, we explore the
use of regular equivalence applied to a trust network to generate
a similarity matrix that is used to select the k-nearest neighbors
for recommending items. We evaluate our approach on Epinions
and we �nd that we can outperform related methods for tackling
cold-start users in terms of recommendation accuracy.
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1 INTRODUCTION
Ever since their introduction, user-based Collaborative Filtering
(CF) approaches have been one of the most widely adopted and
studied algorithms in the recommender systems literature [21]. CF
is based on the intuition that those users, who have shown similar
item rating behavior in the past, will likely give similar ratings to
items in the future. Typically, CF comprises of three steps: �rst, we
retrieve the k-nearest neighbors to the target user for whom the
recommendations are generated. Second, we employ the ratings
from these k neighbors to determine items, which were rated highly
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by them but have not yet been rated by the target user. �ird, these
items are weighted or ranked by applying an appropriate algorithm.

In practice, each user’s ratings are stored in a rating vector. �ese
rating vectors are then used to calculate the correlation between the
target user’s vector and rating vectors of the rest of the users. �e
higher the correlation between the rating vectors of two users, the
higher their similarity. �is can be assessed, e.g., via the Pearson’s
correlation coe�cient, Cosine similarity, Jaccard index or Mean
Squared Di�erence (MSD) [16, 20]. However, such an approach to
neighbor selection su�ers from a cold-start user problem. �is term
refers to novel users which have rated a small number of items or
have not yet rated any items at all [14, 22]. �is means that we
cannot use their rating vectors for �nding similar users based on
the pairwise vector correlation measure.

Apart from popularity-based or location-based approaches [11,
13, 19], trust-based CF methods have been suggested to mitigate
cold-start user problems. �eir basis are trust statements expressed
on platforms such as, e.g., Epinions [17]. Trust statements can
either be expressed explicitly by, for example, assigning trust scores
or implicitly by engaging in social connections with trusted users.
Based on such trust statements, trust networks can be created
with the aim to generate recommendations for users based on
people they trust [15]. Since trust networks are o�en also sparse, a
particular property of trust, namely transitivity [2], can be exploited
to propagate trust in the network. In this way, new connections
are established between users, who are not directly connected,
but are connected via intermediary users. Previous work in this
respect proposed to perform a modi�ed breadth �rst search in the
trust network to compute a prediction. For example, TidalTrust [4]
aggregates and weights the trust values between direct neighbors
of two users. MoleTrust [17] works in a similar fashion, but does
a backward exploration while considering all users up to a pre-
de�ned maximum depth. In order to e�ciently avoid the impact
of noisy data while still considering enough ratings, the authors of
[10] proposed TrustWalker. �ey combined trust-based and item-
based recommendations, where a random walk model is utilized to
compute the con�dence in the predictions.

Present work. In this work, we focus on the �rst step of CF, i.e.,
�nding the k-nearest neighbors. For this purpose, we explore the
use of a similarity measure from network science referred to as
“Katz similarity” (KS) by the author of [18]. Although Katz himself
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never discussed it, KS captures regular equivalence of nodes in a
network and can be applied in many di�erent se�ings [6, 7]. As
such, in this work, we explore how to use KS in a trust-based CF
approach.

Firstly, we utilize the trust connections to create an adjacency
matrix where each entry represents a directed trust link between
two users. Secondly, we apply the KS measure on the created trust
adjacency matrix. More speci�cally, we calculate the pairwise simi-
larities between users by using the iterative approach on calculating
KS. �e iterative approach does not only allow us to calculate the
similarity between two nodes in the network, but additionally pro-
vides the possibility to choose the maximum used path length in
doing so. �is approach e�ectively gives us the ability to decide
how far do we want to propagate trust in the network. Lastly, we
use the resulting similarity matrix and apply various normaliza-
tion techniques in order to get a be�er distribution of similarity
values and be�er evaluation results in return. We evaluate these
approaches on the Epinions dataset.

Contributions and �ndings. �e contributions of this work are
three-fold: (i) we explore the application of KS measure in the
neighbor selection step of the trust-based CF approach for cold-
start users, (ii) we evaluate di�erent normalization techniques on
the resulting similarity matrix to achieve be�er recommendation
accuracy, and (iii) we introduce an adapted KS measure that gives
higher similarity values to node pairs with path lengths of 2. In the
trust-based CF se�ing, this means that propagated trust connec-
tions are given a higher importance than by using the standard KS
measure.

Taken together, this study may help researchers to get an in-
sight on how to apply KS on trust networks in combination with
di�erent normalization techniques to address the cold-start user
problem in CF-based recommender systems. Moreover, we show
that our approach for boosting the propagated trust values can
result in increasing the impact of newly created trust connections
on recommendation accuracy.

2 APPROACH
Our approach utilizes Katz similarity, which is a measure of regular
equivalence, i.e., a measure of the extent to which two nodes share
the same neighbors but also the extent to which their neighbors
are similar. As described in [3], two nodes may have few or no
neighbors in common, but they may still be similar in an indirect,
global way. �e idea behind KS is that paths of any length are
contributing to the value of similarity between two nodes in the
network, with shorter paths having a stronger impact. KS can be
mathematically expressed in a matrix form as follows:

σ =
∞∑
l=0

(αA)l = (I − αA)−1 (1)

where σ represents the similarity matrix and each value σi,j is a
similarity value between nodes i and j, A represents the adjacency
matrix of the network, I is the identity matrix which is necessary
to make sure that each node is similar to itself, α is the a�enuation
factor which weights the contribution of a path of length l . In our
trust-based se�ing, the adjacency matrix A is asymmetric and it

represents an unweighted directed trust network, in which each
node corresponds to a single user and each link represents a trust
statement issued by one user to another:

Ai,j =



1, if user j expressed a trust statement to user i
0, otherwise

(2)

�is also makes the similarity matrix σ asymmetric, which means
that σi,j does not have to be equal to σj,i , which is of advantage
because in this way, the asymmetric property of trust is preserved.
Furthermore, one important thing to note is that for (1) to converge,
the a�enuation factor has to satisfy the following condition:

α <
1
λA

(3)

where λA is the largest eigenvalue of A. �e largest eigenvalue
for the Epinions trust network (see Section 3) is 120.54, hence α
needs to be less than 0.0083 and we set it to 0.008 throughout
all of our experiments.1 Since calculating the matrix inverse is
computationally expensive, we can evaluate the above summation
expression starting from l = 0 for a �xed maximum l (i.e., lmax )
and get the following:

σ (0) = 0

σ (1) = I

σ (2) = αA + I

σ (3) = α2A2 + αA + I
. . .

σ (lmax+1) =
lmax∑
l=0

(αA)l (4)

Step 1: Setting lmax. By using this approach and se�ing lmax to
a positive integer value, we can de�ne how far down the network
do we want to propagate similarity or in this case, trust. In the
conducted experiments, we used values 1 and 2 as lmax , which
means that we either have not propagated similarities through the
network at all or that we propagated them through the network
using a maximum path length of 2.

Step 2: Degree normalization. As described in [18], σ as de�ned
in (1), tends to give high similarity to nodes that have a high degree.
In some cases this might be desirable but if we want to get rid of
this bias, we could apply a degree normalization on σ , which would
give higher similarity values to pairs of nodes that, independently
of their degrees, are similar, while lower values would correspond
to pairs of nodes that are dissimilar. Mathematically, for a given
lmax , this step can be wri�en as follows:

σ
(lmax+1)
Dnorm = D−1 (

lmax∑
l=0

(αA)l )D−1 (5)

1Although we used the iterative approach to calculate KS where lmax was set
to a small integer value and α could have been set to any value between 0 and 1, we
investigate the impact of α when the condition in Eq. 3 is also satis�ed.
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where D represents a degree matrix of a network. In the conducted
experiments, we evaluated approaches with an in-degree normal-
ization, a combined-degree normalization and without a degree
normalization.2

Step 3: Rownormalization. A�er applying degree normalization,
we found that all of the values in the degree normalized similarity
matrix are very close to 0, including the maximum value. �erefore,
we introduced an additional step where we individually scale rows
of the �nal resulting matrix using one of the three vector norms:
l1, l2 ormax .3

Step 4: Boosting propagated similarities. As already mentioned,
the a�enuation factor α is used to decrease similarity the further
it gets propagated in the network. Since we set the α to 0.008,
similarity decays fast with each propagation step. �erefore, prop-
agated similarity values become much smaller already in the �rst
propagation step, i.e., for l = 2. �is would mean that trust con-
nections created through propagation in comparison with direct
trust connections have an almost insigni�cant impact on the result-
ing recommendations, and therefore, this additional boosting step
would increase the impact of propagated similarities with respect
to the recommendation accuracy.

Largest value for lmax in the conducted experiments was set to
2. �is could be interpreted as using user’s neighbors and their
neighbors for generating item recommendations. One of the contri-
butions of this paper was to increase the impact of propagated trust
values generated with KS for lmax = 2. Our proposed approach for
doing so consists of the following four steps: (i) calculate σ (3) as de-
scribed above using trust network as A, (ii) create a new similarity
matrix σ̂ such that:

σ̂i,j =



σ
(3)
i,j , if Ai,j = 0

0, otherwise
(6)

(iii) create σ̂norm matrix by individually scaling rows of σ̂ using
l1, l2 or max vector norm and lastly, (iv) create a similarity matrix
σboost such that:

σboost = A + σ̂norm (7)
With this approach, we achieve that each entry in σboost has a
similarity value of 1 between pairs of nodes for which there exists
an explicit trust connection inA and for pairs of nodes for which the
similarity has been calculated through propagation, the similarity
values are not exclusively small values close to zero increasing their
impact on the resulting recommendations.

Recommendation strategy. As already outlined in Section 1, in
this work, we focus on user-based CF. We �rst create a similarity
matrix using the above mentioned four steps: (i) calculate σ using
Eq. (4) with lmax ∈ {1,2}, (ii) normalize the similarity matrix us-
ing in-degree or combined-degree normalization, (iii) normalize
similarity matrix rows using l1, l2 or max vector norm, and (iv)
apply boosting of propagated similarities. Steps (ii), (iii) and (iv)

2Combined-degree matrix is a diagonal matrix where each value on the diagonal
corresponds to the sum of in-degree and out-degree of a particular node.

3For example, by utilizing the scikit-learn library in Python: h�p://scikit-learn.
org/stable/modules/generated/sklearn.preprocessing.normalize.html.

are optional and can be skipped. Utilizing the created trust-based
similarity matrix, we �rst �nd the k-nearest similar users and a�er-
wards recommend the items of those users as a ranked list of top-n
items to the target user. According to the literature, the maximum
number of nearest neighbors should be a value between 20 and 60
[8], we used 60 in all of our experiments. �e �nal ranking of the
items to recommend is calculated by summing up the similarities
of neighboring users as done in [11, 23].

3 EXPERIMENTAL SETUP
Dataset. To evaluate the performance of our trust-based CF ap-
proaches for cold-start users, the well-known Epinions dataset has
been used [17]. �is dataset was crawled from the consumer review-
ing platform Epinions.com. Here, registered users can rate items
available on the Epinions platform on a scale of 1 − 5. Additionally,
users can issue trust statements to other users on the platform, i.e.,
they can express how much they trust other users. In this dataset,
there are only positive values for trust statements, meaning there
are no negative trust statements (i.e., distrust).

Taken together, there is a total number of 49,290 users in our
dataset, which rated 139,738 di�erent items with 664,824 ratings.
Moreover, users have issued a total number of 487,181 trust connec-
tions. We utilized the trust connections issued by the users to create
an unweighted trust network, in which each node represents a user
and each directed link represents a trust statement expressed by
one user to another. �e resulting trust network provides a graph
density value of 0.0002, making the trust network adjacency matrix
very sparse.

Baseline algorithms. We compare our proposed approach to
three baselines algorithms from the literature, which were shown
to be useful methods in cold-start se�ings:

MP . MostPopular is a classic approach in recommender systems,
which recommends the most frequently used items in the dataset
to every user. �us, it can be also applied in a cold-start se�ing.

Trustexp . �is naive trust-based approach uses explicit trust
values in order to create the neighborhood of a user. Basically, adja-
cency matrix A created from a trust network is used as a similarity
matrix which does not allow for ranking of similar users because
similarity values are binary, i.e., either 0 or 1.

Trustjac . �is is a trust-based approach using Jaccard coe�cient
on explicit trust values and was also used by the authors of [1]. �e
idea behind this approach is that two users are more similar the
more trusted users they have in common. Jaccard coe�cient is a
statistic used to measure the similarity and diversity of sample sets
and it can be wri�en as:

J (A∗,a ,A∗,b ) =
|A∗,a ∩ A∗,b |
|A∗,a ∪ A∗,b |

(8)

where J (A∗,a ,A∗,b ) is used to calculate similarity between users a
and b, A∗,a corresponds to explicit values given to other users in
the trust network by user a and the same applies to A∗,b for user b.

Evaluation method and metrics. In order to compare our pro-
posed approach to these baseline algorithms in a cold-start se�ing,
we extracted all users with no more than 10 rated items from the
dataset. �is resulted in 25,393 users, for which we put all of their
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Approach lmax
Degree Row

Boost nDCG R P
norm. norm.

Trustexp .0224 .0296 .0110
Trustjac .0176 .0219 .0087

MP .0134 .0202 .0070

KSPCMB 2 Combined Max Yes .0303 .0425 .0117
KSPCMN 2 Combined Max No .0295 .0422 .0113
KSPCL1B 2 Combined L1 Yes .0273 .0358 .0106
KSPNL2B 2 No degree L2 Yes .0257 .0340 .0106
KSNCMN 1 Combined Max No .0213 .0289 .0106
KSN INN 1 In degree N/A No .0161 .0243 .0087
KSPNNN 2 No degree N/A No .0036 .0057 .0020

Table 1: Evaluation results for n = 10. �e reported subset
of the 33 evaluated KS-based approaches are additionally la-
beled for an easier result comparison between di�erent step
combinations (i.e., columns 2 to 5).

rated items into the test set. To �nally quantify the performance of
our evaluated algorithms, we used the well-established accuracy
metrics nDCG, Precision and Recall for n = 1 − 10 recommended
items [9, 24].

4 RESULTS
In our study, we evaluated 33 approaches for all possible step com-
binations when creating the similarity matrix (i.e., as de�ned in
Section 2). However, for the sake of space, in Table 1, we only report
the results for a subset of these approaches that provide the most
insightful �ndings. All of the evaluation results are reported for
n = 10, i.e., for 10 recommended items. As it can be seen in Table
1, the best performing approach in terms of all accuracy measures
was KSPCMB , where we used trust propagation (lmax = 2) with
combined degree normalization, row normalization withmax norm
as well as boosting of the propagated similarity values.

One interesting �nding was that if similarity propagation was
not used, i.e., lmax was set to 1, be�er results were achieved if
degree and row normalization were not applied (i.e., basically the
Trustexp baseline). However, if lmax was set to 2, we noticed
result improvements in almost all of the cases except when no row
normalization was applied, e.g., in the case of KSPNNN .

Additionally, similarity propagation with lmax = 2 increased
the similarity matrix density from 0.0002 to 0.008. It turned out
that row normalization was a very important step in using KS
with similarity propagation for neighbor selection. Another impor-
tant �nding was that the combined-degree normalization provided
be�er results than in-degree normalization in most of the cases.
Also, with respect to row normalization, max norm provided bet-
ter results than l1 and l2 norms in most of the cases. Lastly, with
degree normalization and row normalization unchanged, boosting
of propagated similarities o�en provided be�er results.

Finally, in Figure 1, we show the performance of all approaches
listed in Table 1 in form of Recall-Precision plots for di�erent num-
ber of recommended items (i.e., n = 1 − 10). �e results clearly
show that the best performing algorithm (i.e., KSPCMB ) again out-
performs all of the other approaches also for a smaller number of
recommended items (i.e., for n < 10).
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Figure 1: Recall-Precision plots of the described approaches
for n = 1 − 10 recommended items. Again, we can observe
that the approach labeled as KSPCMB outperforms all three
baselines as well as the other KS-based approaches.

5 CONCLUSION & FUTUREWORK
In this paper, we explored the use of Katz similarity (KS), a sim-
ilarity measure of regular equivalence in networks, for selecting
k-nearest neighbors in a Collaborative Filtering (CF) algorithm for
cold-start users. We used an iterative approach for calculating KS
since it provides the ability to restrict the length of paths in the
network used for similarity calculation. We found that KS can
be a very useful measure for neighbor selection if it is used with
degree-normalization and row normalization, especially when us-
ing similarity propagation. When these techniques are properly
combined with KS, we managed to outperform related approaches
for tackling the cold-start problem. Our results also indicate that
trust propagation is a very important feature when using trust net-
works in a CF se�ing as well as that KS is a useful technique for
e�ciently propagating trust in a network. Summed up, our study
may help researchers to get an insight on how to apply KS on trust
networks in combination with di�erent normalization techniques
to address the cold-start user problem in recommender systems.

One limitation of this study was that we only evaluated our
approaches using recommender accuracy, although optimizing on
non-accuracy measures has been closely tied to user satisfaction
[12, 25]. As such, in the future we plan to investigate the impact of
trust-based networks on beyond accuracy metrics such as novelty,
diversity and coverage. Additionally, we would like to evaluate
our approach not only on cold-start users, but rather to run the
experiments on the complete dataset. We would also like to run
additional experiments using di�erent values for α and lmax . More-
over, we also plan to explore the use of recently popularized node
embeddings (e.g., Node2Vec [5]) for trust networks to further im-
prove our results. And �nally, we plan to conduct a more extensive
evaluation to see how our method compares with other popular
approaches which support trust propagation [4, 10, 17].
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