Long Time No See

The Probability of Reusing Tags as a Function of Frequency and Recency

Dominik Kowald, Paul Seitlinger, Christoph Trattner, Tobias Ley
Many Thanks To

Paul Seitlinger
paul.seitlinger@tugraz.at
Graz University of Technology
Austria

Christoph Trattner
ctrattner@know-center.at
Know-Center Graz
Austria

Tobias Ley
tley@tlu.ee
Tallinn University
Estonia

http://Learning-Layers-eu – Scaling up Technologies for Informal Learning in SME Clusters – layers@learning-layers.eu
What will this talk be about?

- Social tags
- Prediction/recommendation of social tags
- Using an equation derived from human memory theory to implement a novel tag recommender
Social tagging is the process of collaboratively annotating content.

Essential instrument of Web 2.0.

Helps users to:
- classify and structure Web content [Zubiaga et al., 2012]
- navigate large knowledge repositories [Helic et al., 2012]
- search and find information [Trattner et al., 2012]
Problem:
People are typically lazy in applying social tags (!)
Solution: Tag Recommenders

- Tag recommendation algorithms support the users in applying appropriate tags for resources and can be based on:
 - Tag Frequencies (MP)
 - Collaborative Filtering (CF)
 - Graph Structures (APR, FR)
 - Factorization Models (FM, PITF)
 - Hybrid approaches

- **Issues**
 - Usually users change their tagging behavior **over time**
 - **BUT** all of these approaches **ignore the time component**

[Huang et al., 2014]
What’s about the time component?

- Only a few time-based approaches available

- The Temporal Tag Usage Pattern approach (GIRPTM) of Zhang et al. (2012) shows that the time component is important for tag recommenders
 - Models the time component using an exponential function

- Empirical research on human memory (Anderson & Schooler, 1991) showed that the reuse-probability of a word depends on its usage-frequency and recency in the past
 - Models the time component using a power function
Which function fits better to model the drift of interests in social tagging systems?
Empirical Analysis: BibSonomy (1)

- Linear distribution with log-scale on Y-axis \rightarrow exponential function

- Linear distribution with log-scale on X- and Y-axes \rightarrow power function
Empirical Analysis: BibSonomy (2)

Exponential distribution
$R^2 = 35\%$

Power distribution
$R^2 = 65\%$

http://Learning-Layers-eu – Scaling up Technologies for Informal Learning in SME Clusters – layers@learning-layers.eu
Our Approach

• **Base-Level learning (BLL) equation** - part of ACT-R model [Anderson et al., 2004]:

\[BLA(t, u) = \ln\left(\sum_{i=1}^{n} (\text{timestamp}_{\text{ref}} - \text{timestamp}_i)^{-d} \right) \]

• Also the context (resource) is important
 – Modeled with the most frequent tags of the resource \((\text{MP}_r)\)

\[\widetilde{T}(u, r) = \arg \max_{t \in T} (\beta \|BLA(t, u)\| + (1 - \beta)\|Y_{t,r}\|) \]

• **Linear runtime**: \(O(|Y_{t,u}| + |Y_{t,r}|)\)

• **Code**: https://github.com/learning-layers/TagRec/
How does it perform?

• 3 freely-available folksonomy datasets
 – BibSonomy (1.5 Million tag assignments)
 – CiteULike (16.7 million tag assignments)
 – Flickr (3.5 million tag assignments)

• Original datasets and p-core pruned datasets (core 3)

• Leave-one-out evaluation (for each user latest bookmark/post in test-set, rest in training-set)

• IR metrics: Precision, Recall, F1-score, MRR, MAP
Results: Precision-Recall plots

(a) BibSonomy (no core)
(b) CiteULike (no core)
(c) Flickr (no core)

- The **time-dependent** approaches outperform the state-of-the-art
- **BLL+C** reaches the highest level of accuracy

http://Learning-Layers.eu — Scaling up Technologies for Informal Learning in SME Clusters — layers@learning-layers.eu
• **BLL+C** needs only around 1 second to provide accurate tag-recommendations for 5,500 user-resource pairs in the test set.

http://Learning-Layers.eu – Scaling up Technologies for Informal Learning in SME Clusters – layers@learning-layers.eu
What we have shown

1) The **time component** is an important factor for tag-recommendations

2) The BLL-equation can be used to implement an effective tag recommender
 • Models the time component with a **power function** rather than an exponential function
 • Outperforms current state-of-the-art algorithms despite its **simplicity**
 • Computationally efficient: **linear runtime**

3) Effective principles of recommenders in social tagging can be implemented if human memory processes are taken into account
What are we currently doing?

• In previous work we presented a tag recommender based on human categorization (3Layers) [Seitlinger et al., 2013]
 – Combine this recommender with BLL to model the time component on a lexical and semantic layer

• Better modelling of the (resource) context (MP_r)
 – Spreading activation
 – Content-based approaches

• Adapt BLL+C also for the recommendation of resources

• Conduct online evaluation (BibSonomy)
Thank you for your attention!

Code and framework:
https://github.com/learning-layers/TagRec/

Questions?

Dominik Kowald
dkowald@know-center.at
Know-Center
Graz University of Technology (Austria)
Backup
Results: Core 3

(d) BibSonomy (core 3)
(e) CiteULike (core 3)
(f) Flickr (core 3)
Results: F1@5, MRR, MAP

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Core</th>
<th>Measure</th>
<th>MP</th>
<th>MP_r</th>
<th>MP_u,r</th>
<th>CF</th>
<th>APR</th>
<th>FR</th>
<th>FM</th>
<th>PITF</th>
<th>GIRPTM</th>
<th>BLL+C</th>
</tr>
</thead>
<tbody>
<tr>
<td>BibSonomy</td>
<td>-</td>
<td>$F_1@5$</td>
<td>.013</td>
<td>.074</td>
<td>.192</td>
<td>.166</td>
<td>.175</td>
<td>.171</td>
<td>.122</td>
<td>.139</td>
<td>.197</td>
<td>.201</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MRR</td>
<td>.008</td>
<td>.054</td>
<td>.148</td>
<td>.133</td>
<td>.149</td>
<td>.148</td>
<td>.097</td>
<td>.120</td>
<td>.152</td>
<td>.158</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAP</td>
<td>.009</td>
<td>.070</td>
<td>.194</td>
<td>.173</td>
<td>.193</td>
<td>.194</td>
<td>.120</td>
<td>.150</td>
<td>.200</td>
<td>.207</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>$F_1@5$</td>
<td>.047</td>
<td>.313</td>
<td>.335</td>
<td>.325</td>
<td>.260</td>
<td>.337</td>
<td>.345</td>
<td>.356</td>
<td>.350</td>
<td>.353</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MRR</td>
<td>.035</td>
<td>.283</td>
<td>.327</td>
<td>.289</td>
<td>.279</td>
<td>.333</td>
<td>.329</td>
<td>.341</td>
<td>.334</td>
<td>.349</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAP</td>
<td>.038</td>
<td>.345</td>
<td>.403</td>
<td>.356</td>
<td>.329</td>
<td>.414</td>
<td>.408</td>
<td>.421</td>
<td>.416</td>
<td>.435</td>
</tr>
<tr>
<td>CiteULike</td>
<td>-</td>
<td>$F_1@5$</td>
<td>.002</td>
<td>.131</td>
<td>.253</td>
<td>.218</td>
<td>.195</td>
<td>.194</td>
<td>.111</td>
<td>.122</td>
<td>.263</td>
<td>.270</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MRR</td>
<td>.001</td>
<td>.104</td>
<td>.229</td>
<td>.201</td>
<td>.233</td>
<td>.233</td>
<td>.110</td>
<td>.141</td>
<td>.246</td>
<td>.258</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAP</td>
<td>.001</td>
<td>.134</td>
<td>.280</td>
<td>.247</td>
<td>.284</td>
<td>.284</td>
<td>.125</td>
<td>.158</td>
<td>.301</td>
<td>.315</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>$F_1@5$</td>
<td>.013</td>
<td>.270</td>
<td>.316</td>
<td>.332</td>
<td>.313</td>
<td>.318</td>
<td>.254</td>
<td>.258</td>
<td>.336</td>
<td>.346</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAP</td>
<td>.012</td>
<td>.294</td>
<td>.420</td>
<td>.363</td>
<td>.429</td>
<td>.436</td>
<td>.326</td>
<td>.334</td>
<td>.455</td>
<td>.489</td>
</tr>
<tr>
<td>Flickr</td>
<td>-</td>
<td>$F_1@5$</td>
<td>.023</td>
<td>-</td>
<td>.435</td>
<td>.417</td>
<td>.328</td>
<td>.334</td>
<td>.297</td>
<td>.316</td>
<td>.509</td>
<td>.523</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MRR</td>
<td>.023</td>
<td>-</td>
<td>.360</td>
<td>.436</td>
<td>.352</td>
<td>.355</td>
<td>.300</td>
<td>.333</td>
<td>.445</td>
<td>.466</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAP</td>
<td>.023</td>
<td>-</td>
<td>.468</td>
<td>.581</td>
<td>.453</td>
<td>.459</td>
<td>.384</td>
<td>.426</td>
<td>.590</td>
<td>.619</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>$F_1@5$</td>
<td>.026</td>
<td>-</td>
<td>.488</td>
<td>.493</td>
<td>.368</td>
<td>.378</td>
<td>.361</td>
<td>.369</td>
<td>.577</td>
<td>.592</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MRR</td>
<td>.026</td>
<td>-</td>
<td>.407</td>
<td>.498</td>
<td>.398</td>
<td>.404</td>
<td>.375</td>
<td>.390</td>
<td>.511</td>
<td>.533</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAP</td>
<td>.026</td>
<td>-</td>
<td>.527</td>
<td>.663</td>
<td>.513</td>
<td>.523</td>
<td>.481</td>
<td>.502</td>
<td>.676</td>
<td>.707</td>
</tr>
</tbody>
</table>
Runtime Complexities

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complexity</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP</td>
<td>$O(</td>
<td>Y_t</td>
</tr>
<tr>
<td>MP_u</td>
<td>$O(</td>
<td>Y_{t,u}</td>
</tr>
<tr>
<td>GIRP</td>
<td>$O(</td>
<td>Y_{t,u}</td>
</tr>
<tr>
<td>BLL</td>
<td>$O(</td>
<td>Y_{t,u}</td>
</tr>
<tr>
<td>MP_r</td>
<td>$O(</td>
<td>Y_{t,r}</td>
</tr>
<tr>
<td>MP_{u,r}</td>
<td>$O(</td>
<td>Y_{t,u}</td>
</tr>
<tr>
<td>GIRPTM</td>
<td>$O(</td>
<td>Y_{t,u}</td>
</tr>
<tr>
<td>BLL+C</td>
<td>$O(</td>
<td>Y_{t,u}</td>
</tr>
<tr>
<td>CF</td>
<td>$O(</td>
<td>V_r</td>
</tr>
<tr>
<td>APR</td>
<td>$O(l \cdot (</td>
<td>Y_t</td>
</tr>
<tr>
<td>FR</td>
<td>$O(l \cdot (</td>
<td>Y_t</td>
</tr>
<tr>
<td>FM</td>
<td>$O(l \cdot</td>
<td>B_s</td>
</tr>
<tr>
<td>PITF</td>
<td>$O(l \cdot</td>
<td>B_s</td>
</tr>
</tbody>
</table>
Runtimes for BibSonomy

<table>
<thead>
<tr>
<th>Core</th>
<th>Type</th>
<th>MP</th>
<th>MP_u</th>
<th>MP_r</th>
<th>MP_u,r</th>
<th>CF</th>
<th>APR/FR</th>
<th>PIF</th>
<th>GIP</th>
<th>GIRPTM</th>
<th>BLL</th>
<th>BLL+C</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Train [</td>
<td></td>
<td>t</td>
<td></td>
<td>]</td>
<td>.091</td>
<td>.177</td>
<td>.217</td>
<td>.520</td>
<td>.164</td>
<td>.919</td>
<td>58,182</td>
</tr>
<tr>
<td></td>
<td>Test [f]</td>
<td>.000</td>
<td>.001</td>
<td>.001</td>
<td>.120</td>
<td>.683</td>
<td>.000</td>
<td>.000</td>
<td>.001</td>
<td>.001</td>
<td>.001</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>All [</td>
<td></td>
<td>t</td>
<td></td>
<td>]</td>
<td>.091</td>
<td>.349</td>
<td>.250</td>
<td>.631</td>
<td>662,724</td>
<td>3,751</td>
<td>58,182</td>
</tr>
<tr>
<td>3</td>
<td>Train [</td>
<td></td>
<td>t</td>
<td></td>
<td>]</td>
<td>.028</td>
<td>.052</td>
<td>.059</td>
<td>.059</td>
<td>.037</td>
<td>.165</td>
<td>4,318</td>
</tr>
<tr>
<td></td>
<td>Test [f]</td>
<td>.000</td>
<td>.001</td>
<td>.001</td>
<td>.001</td>
<td>.002</td>
<td>.062</td>
<td>.000</td>
<td>.000</td>
<td>.001</td>
<td>.001</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>All [</td>
<td></td>
<td>t</td>
<td></td>
<td>]</td>
<td>.028</td>
<td>.111</td>
<td>.080</td>
<td>.119</td>
<td>2,006</td>
<td>49.354</td>
<td>4,318</td>
</tr>
</tbody>
</table>