Overcoming the Imbalance Between Tag Recommendation Approaches and Real-World Folksonomy Structures with Cognitive-Inspired Algorithms

Dominik Kowald & Elisabeth Lex

Know-Center & Graz University of Technology

ESCSS, London, 15.11. – 17.11.2017

www.afel-project.eu www.know-center.at
Social Tagging

- Social tagging is the process of **collaboratively annotating content** with keywords (i.e., *tags*).
- Essential instrument of Web 2.0 to **structure and search** Web content.

(a) Narrow folksonomy

(b) Broad folksonomy

[Zubiaga, 2009]
Tag Recommendations

BibSonomy
The blue social bookmark and publication sharing system.

edit your bookmark post

general information

URL
https://github.com/learning-layers/TagRec
This field is required.

title
TagRec framework
This field is required.

Description
Open-source tag recommendation evaluation framework

tags - describe the post

tags
learning-layers recommender tagrec
space separated

recommendation
recommender tagrec eval google learning-layers

post visibility

visibility settings
- public
- private
- other

save save and rate

Dominik Kowald & Elisabeth Lex
Know-Center & Graz University of Technology

[BibSonomy, 2017]
Imbalance

- Current tag recommendation algorithms are designed in a purely data-driven way
 - Tag popularity, user similarities, topic modeling, factorization of resource features, etc.
 - Rely on dense / broad folksonomy structures
- Most real-world folksonomies are sparse / narrow

| Dataset | |U| |R| |T| |Y| |B| |B/|U| |B/|R| |
|-----------|-----------------|-----------------|-----------------|----------|-----------------|----------|-----------------|-----------------|-----------------|----------|-----------------|----------|-----------------|
| Flickr | 9,590 | 856,755 | 125,119 | 3,328,590| 856,755 | 89.338 | 1.000 | |
| CiteULike | 18,474 | 811,175 | 273,883 | 3,446,650| 900,794 | 48.760 | 1.110 | |
| BibSonomy | 10,179 | 683,478 | 201,254 | 2,986,396| 772,108 | 75.853 | 1.129 | |
| Delicious | 15,980 | 963,741 | 184,012 | 4,266,206| 1,447,267 | 90.567 | 1.501 | |
| LastFM | 1,892 | 12,522 | 9,748 | 186,474 | 71,062 | 37.559 | 5.674 | |
| MovieLens | 4,009 | 7,601 | 15,238 | 95,580 | 55,484 | 13.839 | 7.299 | |
Approach

• The way users choose tags for their resources strongly corresponds to **processes in human memory** and its cognitive structures [Fu, 2008; Seitlinger & Ley, 2012]

• **Activation processes** in human memory → **ACT-R** [Anderson et al., 2004]

• **Activation equation** → usefulness of memory unit depends on **general usefulness** (i.e., frequency and recency) and usefulness in **current semantic context**

\[
A_i = B_i + \sum_j (W_j \cdot S_{j,i})
\]

\[
B_i = \ln(\sum_{j=1}^{n} t_{j,i}^{-d})
\]
How are **activation processes in human memory** influencing the **tag reuse behavior** of users in social tagging systems?

RQ1 Results

- The **more frequently** a tag was used in the past \((k > 0)\), the higher its reuse probability is.
- The **more recently** a tag was used in the past \((k < 0)\), the higher its reuse probability is.
- The **more similar** a tag is to tags of the **current sem. context** \((k > 0)\), the higher its reuse probability is.

→ The **activation equation of ACT-R** models these factors

[citeULike, 2016]
Can the activation equation of the cognitive architecture ACT-R be exploited to develop a tag recommendation algorithm, which is capable of overcoming the imbalance current approaches and real-world folksonomy structures?

RQ2 Results (nDCG@10)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>MP_r</th>
<th>MP_u,r</th>
<th>CF</th>
<th>LDA</th>
<th>PITF</th>
<th>FR</th>
<th>GIRPTM</th>
<th>ACT-R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flickr</td>
<td>-</td>
<td>.569</td>
<td>.666</td>
<td>.280</td>
<td>.535</td>
<td>.561</td>
<td>.686</td>
<td>.711</td>
</tr>
<tr>
<td>CiteULike</td>
<td>.063</td>
<td>.392</td>
<td>.359</td>
<td>.138</td>
<td>.294</td>
<td>.392</td>
<td>.422</td>
<td>.438</td>
</tr>
<tr>
<td>BibSonomy</td>
<td>.091</td>
<td>.407</td>
<td>.369</td>
<td>.219</td>
<td>.327</td>
<td>.408</td>
<td>.409</td>
<td>.434</td>
</tr>
<tr>
<td>Delicious</td>
<td>.187</td>
<td>.358</td>
<td>.356</td>
<td>.271</td>
<td>.302</td>
<td>.292</td>
<td>.393</td>
<td>.431</td>
</tr>
<tr>
<td>LastFM</td>
<td>.283</td>
<td>.386</td>
<td>.317</td>
<td>.388</td>
<td>.414</td>
<td>.399</td>
<td>.397</td>
<td>.425</td>
</tr>
<tr>
<td>MovieLens</td>
<td>.271</td>
<td>.328</td>
<td>.254</td>
<td>.296</td>
<td>.324</td>
<td>.319</td>
<td>.326</td>
<td>.338</td>
</tr>
</tbody>
</table>

- **ACT-R** outperforms related tag recommendations methods in **narrow and broad** folksonomy settings

→ Cognitive-inspired approaches can **overcome the imbalance** between tag recommendations and folksonomies
Given that activation processes in human memory can be modeled to improve tag recommendations, can they also be utilized for hashtag recommendations in Twitter?

Scenario 1: Hashtag recommendations w/o current tweet

Scenario 2: Hashtag recommendations w/ current tweet

Activation processes in human memory can be utilized for hashtag recommendations in Twitter.
Conclusion

RQ1 Activation processes in human memory (i.e., frequency, recency and semantic context) have an influence on tag usage practices.

RQ2 The activation equation of ACT-R can be used to design a tag recommendation algorithm that **overcomes the imbalance** between current algorithms and the structure of real-world folksonomies.

RQ3 This approach can also be generalized for **hashtag recommendations in Twitter**.

- **Future Work**
 - **Adapt** approach for other types of cognitive-inspired recommender systems (e.g., resource recommendation)
 - **Validate** offline results with **online studies**
Thank you for listening!
Questions / suggestions? → Poster

Dominik Kowald
Elisabeth Lex

Know-Center & Graz University of Technology

→ All evaluations have been conducted using the open-source TagRec tag recommendation benchmarking framework
 • https://github.com/learning-layers/TagRec
References (i)

References (ii)